
Per-Idar Evensen, Håvard Stien & Dan Helge Bentsen
Norwegian Defence Research Establishment (FFI)

NATO Modelling & Simulation Group Annual Symposium (NMSG-171)
Vienna, 24–25 October 2019

Using Behaviour Trees to Model Battle Drills 
for Computer-Generated Forces



• Background
• Behaviour trees (BTs)

– Introduction
– Developing BTs
– Advantages and Limitations

• Modelling Battle Drills
– Example
– Video

• Experiences with BTs
• Summary and Conclusion

Agenda

2

Presenter
Presentation Notes
(1:00)First, I will briefly go through the background for this work.Then, I will give an introduction to behaviour trees, look at the process of developing BTs, and discuss the most important advantages and limitations of BTs.After this, I will describe how we are using BTs to build a library of the most important battle drills for mechanized infantry platoons, and also show an example of a modelled battle drill, before I conclude the presentation with our experiences from working with BTs.



• Research question: how to increase combat effectiveness in land force operations?

• Detailed simulations of battalion to brigade level operations, to assess and compare the 
performance of different land force structures, that may vary with regard to:
– Composition of material and equipment
– Tactical organization
– Operational concept

• Two main factors that have the potential to improve the fidelity of our constructive simulations:
– Increased terrain resolution
– Better tactical artificial intelligence (AI) that can take advantage of this terrain

Background

3

Presenter
Presentation Notes
(1:00)At FFI we investigate how to increase combat effectiveness in land force operations.As part of this work we need to conduct detailed simulations of battalion to brigade level operations, to assess and compare the performance of different land force structures that may vary with regard to: composition of material and equipment, tactical organization, and operational concept.Based on our previous simulations we have identified two main factors that have the potential to improve the fidelity of our constructive simulations: increased terrain resolution, and better tactical AI that can take advantage of this terrain.



• Behaviour trees (BTs) are a relatively new and increasingly popular approach 
for developing behaviours for artificial intelligence (AI) and intelligent agents:
– Non-player characters (NPCs) in computer games, robots, and autonomous vehicles
– First high-profile computer game which used BTs was Halo 2 from Bungie Software 

(released in 2004)

• What makes BTs so powerful is their composability and modularity:
– Task nodes and control flow nodes are composed into sub-trees which represent more 

complex actions, and these actions can be composed into higher level behaviours
– Task nodes and action sub-trees can be reused, and different sub-trees can be developed 

independently of each other

Behaviour Trees

4

Presenter
Presentation Notes
(1:00)Behaviour trees are a relatively new and increasingly popular approach for developing behaviours for artificial intelligence (AI) and intelligent agents.The approach has become especially popular for creating behaviours for non-player characters in computer games, robots, and autonomous vehicles.The first high-profile computer game that used BTs was Halo 2 from Bungie Software, which was released in 2004.What makes BTs so powerful is their composability and modularity.Task nodes and control flow nodes are composed into sub-trees that represent more complex actions, and these actions can be composed into higher level behaviours.Task nodes and action sub-trees can be reused, and different sub-trees can be developed independently of each other.



BTs are graphically represented as 
directed rooted trees:
• Composed of nodes and directed 

edges

A BT represents all the possible courses 
of action an agent can take:
• A path from the root to one of the leaf 

nodes typically represents one 
possible course of action

5

Structure

Presenter
Presentation Notes
(0:30)BTs are graphically represented as directed rooted trees, and are composed of nodes and directed edges connecting the nodes.A BT represents all the possible courses of action an agent can take, and a path from the root to one of the leaf nodes typically represents one possible course of action.



BTs are traversed in a depth-first
manner (from left to right):
• An AI engine will usually traverse the 

BT from the root for each simulation 
step or tick, executing each node 
down the tree

6

Traversal

Presenter
Presentation Notes
(0:30)BTs are traversed in a depth-first manner from left to right.An AI engine will usually traverse a BT from the root for each simulation step or tick, executing each node down the tree.



During the traversal each child node will 
return one of the following three status 
values to its parent:
1. Success: The node achieved its 

goal
2. Failure: The node failed
3. Running: The node did not finish its 

execution within the current 
simulation step and is still running

7

Traversal

Presenter
Presentation Notes
(0:30) During the traversal each child will return one of the following three status values to its parent:- Success: The node achieved its goal.- Failure: The node failed.- Running: The node did not finish its execution within the current simulation step and is still running.The running status is typically returned by tasks that take some time to complete, for example moving from one place to another.



• Control flow nodes (or composite nodes):
– Interior nodes
– Types: selector nodes, sequence nodes, and parallel nodes

• Task nodes (or execution nodes):
– Leaf nodes
– Types: condition nodes and action nodes

• Decorator nodes:
– Have only one child and modify the behaviour of the child in some way

Categories of Nodes

8

Presenter
Presentation Notes
(0:30)The main categories of nodes are control flow nodes, task nodes, and decorator nodes.The control flow nodes are interior nodes, so they always have one or more children, and there are three types of control flow nodes: selector nodes, sequence nodes, and parallel nodes.The task nodes are leaf nodes, and there are two types of task nodes: condition nodes and action nodes.Decorators are a special type of nodes that have only one child and modify the behaviour of the child in some way.



Executes each of its children from left to 
right, and returns:
• Success: As soon as one of the 

children returns success
• Failure: If all the children return 

failure
• Running: If the child that is currently 

being executed returns running at the 
end of the simulation step

9

Selector Nodes

Selector nodes are typically used when a set of actions 
represent alternative ways of reaching a goal

Presenter
Presentation Notes
(0:30)A selector node (denoted by a question mark) executes each of its children from left to right and returns success as soon as one of the children returns success.If none of the children returns success, the selector node returns failure.If the child that is currently being executed returns running at the end of a simulation step, the selector node returns running.Selector nodes are typically used when a set of actions represents alternative ways of reaching a goal.



Executes each of its children from left to 
right, and returns:
• Failure: As soon as one of the 

children returns failure
• Success: If all the children return 

success
• Running: If the child that is currently 

being executed returns running at the 
end of the simulation step

10

Sequence Nodes

Sequence nodes are typically used when a set of 
actions needs to be carried out in a particular order

Presenter
Presentation Notes
(0:30)A sequence node (denoted by a rightwards arrow) executes each of its children in sequence from left to right and returns failure as soon as one of the children returns failure.If all the children return success, the sequence node returns success.Running is identical to the selector node.Sequence nodes are typically used when a set of actions needs to be carried out in a particular order.



Checks if a given condition within the 
simulated environment (or the real 
world) is fulfilled, and returns:
• Success: If the condition is fulfilled
• Failure: Otherwise
• Running: Never

11

Condition Nodes

Presenter
Presentation Notes
(0:30)A condition node checks if a given condition within the simulated environment, or the real world, is fulfilled.If the condition is fulfilled it returns success, otherwise it returns failure.A condition task will always complete within a simulation step, so it will never return running.



Performs an action, which alters the 
state of the simulated environment (or 
the real world), and returns:
• Success: If the action was completed 
• Failure: If the action could not be 

completed 
• Running: If the action was not 

finished within the current simulation 
step

12

Action Nodes

Presenter
Presentation Notes
(0:30)An action node performs an action, which alters the state of the simulated environment, or the real world, in some way.If the action was completed the action node returns success, and if the action could not be completed the action node returns failure.Running is returned if the action was not finished within the current simulation step.



Example 1: Move into Room 

13

Presenter
Presentation Notes
(1:00)Here is an example of a simple BT for moving into a room.When this BT is executed, the selector node will first try to execute the left child, which is a sequence node.The sequence node will first execute the condition, which checks if the door is open.If the door is open, the sequence node will execute the next child, which is an action node that moves the agent into the room.If the door is closed, the sequence node will return failure, and the selector node will try to execute the right child, which is also a sequence node.This sequence node will try to execute the following three action nodes: “Move to door”, “Open door” and “Move into room”.If any of these three action nodes fail, the whole BT will return failure.



Example 2: Move into Room (More Advanced) 

14

Presenter
Presentation Notes
(0:30)This is a slightly more advanced example where the “Open door” action node has been extended to a subtree.Here the agent will try to unlock door and even kick down the door to get into the room.



• Iterative process where we typically start with a simple BT, and then make it 
more complex by adding more and more branches of alternative courses of 
action for achieving a goal

• In a BT the left branch of the tree will contain the high-priority behaviours, while 
the right branch will contain the low-priority behaviours
– The default or unconditional behaviour will therefore be found at the far right side of a BT

• Most modularity is achieved if each task can be broken into the smallest parts 
that can usefully be composed
– Rule of thumb: A BT should be decomposed into the smallest action nodes which do not 

have sub-parts that are likely to be used as stand-alone actions in other parts of the BT

Developing BTs

15

Presenter
Presentation Notes
(1:00)Development of BTs is an iterative process, where we typically start with a simple BT and then make it more complex by adding more and more branches of alternative courses of action for achieving a goal.Generally, in a BT the left branch of the tree will contain the high-priority behaviours, while the right branch will contain the low-priority behaviours.The default or unconditional behaviour will therefore be found at the far right side of a BT.Most modularity is achieved if each task can be broken into the smallest parts that can usefully be composed.As a rule of thumb, a BT should be decomposed into the smallest action nodes which do not have sub-parts that are likely to be usable as stand-alone actions in other parts of the BT.



The most important advantages with BTs:
• Highly composable (ability to combine components into various combinations)
• Highly modular (can be subdivided into modules, and any module can be 

replaced by any other module)
• Reactive (react quickly to changes)
• Human readable and can be created by visual editors
• Suitable for automatic generation (for example by using machine learning 

techniques)

Advantages

16

Presenter
Presentation Notes
(1:00)Here are the most important advantages with BTs:- They are highly composable. Composability means the ability to combine components into various combinations for building different systems.- They are highly modular, which means that they can be subdivided into modules, and that any module can be replaced by any other module. - They are reactive, which means that they can react quickly to changes.- They are human readable and can be created by visual editors.- They are suitable for automatic generation, for example by using machine learning techniques.



The most important limitations of BTs:
• Poor at modelling the uncertainty in situations were there are multiple valid 

options to choose from
• It is somewhat cumbersome to represent typical state-based behaviour using 

BTs
• For very large BTs the cost of having to execute the whole tree from the 

beginning for each simulation step will eventually cause performance issues, 
especially in simulations with a high number of constructive entities

Limitations

17

Presenter
Presentation Notes
(1:00)Here are the most important limitations of BTs: - They are poor at modelling the uncertainty in situations where there are multiple valid options to choose from. - It is somewhat cumbersome to represent typical state-based behaviour using BTs. - There are limitations on how large and complex behaviour models can be when using BTs. For very large BTs, the cost of having to execute the whole tree from the beginning for each simulation step will eventually cause performance issues, especially in simulations with a high number of constructive entities.



• We are currently building a BT-based library of behaviour models of the most 
important battle drills for mechanized infantry (dismounted soldiers and combat 
vehicles)

• The behaviour model library has a hierarchical structure:
– Models of battle drills for entities, squads (only for dismounted soldiers) and platoons

• Human operators will give orders to the semi-automated forces (SAF) at the 
squad or platoon level
– The entities will be completely autonomous within a squad (for dismounted soldiers) or 

platoon (for vehicles)
• Future work: build behaviour models for a set of more generic battle drills at the 

company level, so that more general orders can be given at this level

Modelling Battle Drills

18

Presenter
Presentation Notes
(1:00)We are currently building a BT-based library of behaviour models of the most important battle drills for mechanized infantry platoons.The behaviour model library will have a hierarchical structure with models of battle drills for entities, squads, and platoons.Human operators will give orders to the semi-automated forces (SAF) at the squad or platoon level, but the entities will be completely autonomous within a squad for dismounted soldiers and within a platoon for combat vehicles.In the future, we envisage building behaviour models for a set of more generic battle drills at the company level, so that more general orders can be given at this level.It is a goal that one operator should be able to control an entire battalion of manoeuvre forces.



Modelling Battle Drills

19

Presenter
Presentation Notes
(0:30)This illustrates the hierarchy of behaviour models.Messages are used for communication between the unit level BT and the entity level BTs, for example for sending orders from the unit level BT to the entity level BTs and sending reports from the entity level BTs to the unit level BT.



Sources of information:
• Universal Task Lists (UTLs)
• Field manuals
• Subject matter experts (SMEs) and 

officers

20

Modelling Battle Drills

Presenter
Presentation Notes
(0:30)To get an overview of the different tasks a unit should be able to conduct, it is possible to use so called Universal Task Lists (UTLs).Detailed descriptions of tasks and battle drills can often be found in field manuals and of course by consulting subject matter experts (SMEs) and officers.



Battle Drill for Enemy Contact for a Dismounted Infantry Squad 

21

Presenter
Presentation Notes
(0:30)This shows an example of a battle drill for enemy contact for a dismounted infantry squad:Contact is discovered in front.The squad forms a line, and then splits into two fire teams.The two fire teams conduct backwards leap-frogging until they find a position where they can break off contact, and find cover and concealment from the enemy.



22

Presenter
Presentation Notes
(2:00)



• BTs have a somewhat steeper learning curve than for example Finite State 
Machines (FSMs)

• The composability and modularity that enables sub-trees to be reused is very 
useful and simplifies the development process

• A good visual editor with run time debugging functionality is very helpful for 
creating BTs

Experiences with BTs

23

Presenter
Presentation Notes
(0:30)BTs have a somewhat steeper learning curve than for example Finite State Machines.The composability and modularity that enables sub-trees to be reused is very useful and simplifies the development process. Often we start by building an initial sub-tree for an action, and then reuse this in multiple places. Later, when we improve the sub-tree, this improvement will apply to all BTs that use this sub-tree.A good visual editor with run time debugging functionality is very helpful for creating BTs.



• BTs have become very popular, mainly because they are composable, 
modular, and reactive

• BTs are well suited for developing human behaviour models of moderate 
complexity for semi-automated forces (SAF) in constructive simulations

• The composability and modularity of BT-based behaviour models open up 
opportunities for collaboration on development and sharing of behaviour models 
of battle drills (e.g., between NATO and partner nations that mostly have similar 
doctrines)

Summary and Conclusion

24

Presenter
Presentation Notes
(0:30)BTs have become very popular, mainly because they are composable, modular, and reactive.BTs are well suited for developing human behaviour models of moderate complexity for semi-automated forces (SAF) in constructive simulations.The composability and modularity of BT-based behaviour models open up opportunities for collaboration on development and sharing of behaviour models of battle drills, for example between NATO and partner nations that mostly have similar doctrines.



“We turn knowledge and ideas into 
an effective defence”

Contact info:
per-idar.evensen@ffi.no


	Using Behaviour Trees to Model Battle Drills for Computer-Generated Forces
	Agenda
	Background
	Behaviour Trees
	Structure
	Traversal
	Traversal
	Categories of Nodes
	Selector Nodes
	Sequence Nodes
	Condition Nodes
	Action Nodes
	Example 1: Move into Room 
	Example 2: Move into Room (More Advanced) 
	Developing BTs
	Advantages
	Limitations
	Modelling Battle Drills
	Modelling Battle Drills
	Modelling Battle Drills
	Battle Drill for Enemy Contact for a Dismounted Infantry Squad 
	Slide Number 22
	Experiences with BTs
	Summary and Conclusion
	Slide Number 25

